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Introduction



Industrial context

• study the propagation of sound waves emitted by an aircraft
• acoustic pollution reduction, prototype certification

• discrete model for numerical simulations
• volume domain v (jet flow)

• Finite Elements Method (FEM) [19, 16]
• surface domain s (surface of the aircraft and the volume domain)

• Boundary Elements Method (BEM) [12, 21]

An acoustic wave (blue arrow) emitted by the aircraft’s engine, reflected on the wing and crossing the jet flow.
Real-life case [20] (left) and a numerical model example (right).
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Problem

Global linear system coupling [13, 14] the FEM and the BEM unknowns:

Avv AT
sv

Asv Ass

  ×
xv
xs

[ ]
=

bv

bs

 

2



Problem

Global linear system coupling [13, 14] the FEM and the BEM unknowns:

Avv AT
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  ×
xv
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[ ]
=
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bs

 
• symmetric coefficient matrices:

• sparse parts
• lot of zeros → storing only non-zero values
• discretization of v with FEM (Avv ),

s / v interaction (Asv )

• a dense part
• a few or no zeros → storing all values
• discretization of s with BEM (Ass)
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Problem

Global linear system coupling [13, 14] the FEM and the BEM unknowns:

Avv AT
sv

Asv Ass

  ×
xv
xs

[ ]
=

bv

bs

 
• finer model → larger system

• need for efficient solution methods
• iterative

• compute a sequence of terms based on
previous ones

• find a good solution approximation

• direct
• using Schur complement [22]
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Direct solution

Schur complement

• reduce the problem on boundaries → simplify the system to solve

R1

R2

Avv AT
sv

Asv Ass

  ×
xv
xs

[ ]
=

bv

bs

 
Computation steps

1. eliminate xv from the second equation → Schur complement SR1 Avv AT
sv

R2←R2−AsvA
−1
vv ×R1 0 Ass − AsvA

−1
vv AT

sv︸ ︷︷ ︸
S

× [
xv
xs

]
=

[
bv

bs − AsvA
−1
vv bv

]

2. solve the reduced Schur complement system
Sxs = bs − AsvA

−1
vv bv

3. determine xv using xs
xv = A−1

vv (bv − AT
svxs)
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Numerical computation

Properties of the input linear system

• Avv and Ass are symmetric
• storing only half of the coefficients

• Avv and Asv are sparse
• storing only non-zero values

Initial state of A

Ideal computation of S = Ass − AsvA
−1
vv Avs

• factorization of Avv into LvvL
T
vv → fill-in

S = Ass − Asv (LvvL
T
vv )
−1AT

sv

• computation of the Schur complement

S = Ass − (Asv (L
T
vv )
−1)︸ ︷︷ ︸

triangular solve

(Asv (L
T
vv )
−1)T︸ ︷︷ ︸

implicitly known

A after computing S
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Two-stage implementations



Implementation

• coupling of a sparse direct and a dense direct solver
• fully-featured community solvers with appealing functionalities

• low-rank compression
• out-of-core computation
• distributed memory parallelism

• two different schemes depending on the way of using the building
blocks of the sparse solver

• baseline coupling
• advanced coupling
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Vanilla solver couplings

baseline coupling

• separate Avv , Asv and Ass

• sparse facto., sparse solve

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

• AT
sv explicitly stored, dense

advanced coupling

• A as a whole

• sparse facto.+Schur

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM
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Coping with limitations

• keep using fully-featured well optimized community solvers despite
limitations in their API

• two new algorithms for block-wise computation of S
→ allow for low-rank compression and out-of-core
1. multi-solve based on the baseline coupling
2. multi-factorization based on the advanced coupling
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Proposed algorithms

Multi-solve

Si = Ass i − Asv

solve → Yi︷ ︸︸ ︷
(LvvL

T
vv )
−1AT

sv i

• 1 sparse facto. of the green matrix (symmetric)

• plenty of sparse solve involving the orange blocks (result is dense)

WITHOUT compression

WITH compression
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Proposed algorithms

Multi-factorization

Sij = Ass ij −

used with Schur API︷ ︸︸ ︷
Asv i (LvvUvv )

−1AT
sv j

• multiple sparse facto.+Schur of the violet matrix (non-symmetric)

• computation of the Schur complement blocks via API

WITHOUT compression

WITH compression
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Experimental evaluation

Academic test case [5]

• linear systems close enough to real-life

• arbitrary large FEM/BEM systems

Industrial test case

• 2,259,468 unknowns (larger s part)

Solvers

• sparse: MUMPS (compressed) [10]

• dense: SPIDO (non-compressed),
HMAT (compressed) [17]

Computation platform

• PlaFRIM [3]

Academic pipe mesh with v and s parts
(length: 2 m; radius: 4 m; 20,000 unknowns)

Real-life industrial FEM/BEM mesh
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Preliminary comparative study [7]

• single node multi-core benchmarks without out-of-core
• study the solvers separately on sparse FEM and dense BEM systems

• evaluate the impact of compression
• identify the best performing parallel configurations

• better understand the behavior on coupled FEM/BEM systems
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Focus on multi-solve and multi-factorization [8, 9]

• single node multi-core benchmarks without out-of-core

• push the algorithms to their limits (RAM)

• evaluate the impact of compressing the Schur complement S

• study the performance-memory tradeoff for varying block sizes

• validate the algorithms on a real-life industrial case
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Focus on multi-solve and multi-factorization [8, 9]

multi-solve

multi-factorization

Industrial case

• cannot be processed without our algorithms

• compression of S helps
• multi-solve: 1.6× faster, 6.4× less RAM
• multi-factorization: 9.4× faster, 2.0× less RAM
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Going further

Energetic profile [6]

• with H. Mathieu (SED), A. Guermouche and B. Tagliaro (STORM)
• energy_scope [18]

• visualize the energy consumption of a complex HPC application

• compare different indicators at once (energy, RAM, flops)

• clues on how to improve the implementation

Out-of-core and distributed memory parallelism (ongoing work)

• extends the previous studies of multi-solve and multi-factorization
1. low-rank compression of S
2. out-of-core computation of S
3. scale to multiple computation nodes with MPI
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Summary

• two algorithms allowing us to:
• benefit from the most advanced functionalities of fully-featured

solvers
• process larger systems compared to vanilla couplings

• 9M (multi-solve) and 2.5M (multi-factorization) vs. 1.3M on a single
24-core, 128 GiB RAM workstation

• confirm the advantage of compressing the Schur complement

• validate the algorithms on a real-life industrial case
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Single-stage implementations



Towards ideal implementation

multi-solve

multi-factorization

Limitations

• multi-solve: explicit storage of orange blocks in a
non-compressed dense matrix

• multi-factorization: superfluous re-factorizations
of the sparse submatrix Avv

• two separate stages
1. Schur complement S assembly
2. factorization of S and solution of xs and xv
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Single-stage schemes

Sparse-oblivious Partially sparse-aware Sparse-aware

18



Sparse-aware single-stage implementation

• with A. Buttari and A. Jego
• IRIT/ENSEEIHT, Toulouse

• coupling of task based direct solvers
• sparse: qr_mumps [4]

• no compression, no distributed memory
parallelism (ongoing Ph.D.)

• dense: HMAT
• relying on the StarPU runtime [11]

• built-in out-of-core capability

• S is never assembled entirely in memory

• dense solver can start working without waiting
for S to be fully assembled
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Current status

Done

1. integrate qr_mumps into the Airbus solver stack

2. implement multi-solve using qr_mumps as sparse solver for matrices
with real coefficients

3. implement LLT factorization for complex symmetric matrices in
qr_mumps (mission in Toulouse)

Ongoing

4. add a Schur complement API to qr_mumps

5. implement multi-factorization using qr_mumps as sparse solver

Pending

6. single-stage implementation
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Summary

• two-stage multi-solve and multi-factorization allowing us to:
• benefit from the most advanced functionalities of fully-featured

solvers
• process larger systems compared to vanilla couplings
• not ideal

• single-stage scheme
• towards a proof of concept with some sacrifices
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Conclusion



Final words

Thank you for attending!
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Appendix



Reproducible software envionments with Guix [1]

• transactional package manager able to co-exist with the primary
package manager

• self-contained, executable descriptions of entire software
environments

• reproducible accross multiple different machines
• natively or through container solutions

29



Reproducible studies with Org mode for Emacs [2, 15]

• literate programming paradigm
• combining formatted text with source code

• exhaustive documentation allowing others to reproduce a study
• question of proprietary source code, e.g. Airbus
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Going further

How to build a reproducible study from scratch with Guix and Org

• tuto-techno-guix-hpc.gitlabpages.inria.fr/guidelines/
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