
Solution of larger coupled sparse/dense
linear systems in an industrial aeroacoustic
context

Emmanuel Agullo, Marek Felšöci, Guillaume Sylvand

June 15, 2022

Inria Bordeaux Sud-Ouest, France
Team-project HiePACS

Introduction

Industrial context

• study the propagation of sound waves emitted by an aircraft
• acoustic pollution reduction, prototype certification

• discrete model for numerical simulations
• volume domain v (jet flow)

• Finite Elements Method (FEM) [19, 16]
• surface domain s (surface of the aircraft and the volume domain)

• Boundary Elements Method (BEM) [12, 21]

An acoustic wave (blue arrow) emitted by the aircraft’s engine, reflected on the wing and crossing the jet flow.
Real-life case [20] (left) and a numerical model example (right).

1

Problem

Global linear system coupling [13, 14] the FEM and the BEM unknowns:

Avv AT
sv

Asv Ass

 ×
xv
xs

[]
=

bv

bs

2

Problem

Global linear system coupling [13, 14] the FEM and the BEM unknowns:

Avv AT
sv

Asv Ass

 ×
xv
xs

[]
=

bv

bs

• symmetric coefficient matrices:

• sparse parts
• lot of zeros → storing only non-zero values
• discretization of v with FEM (Avv),

s / v interaction (Asv)

• a dense part
• a few or no zeros → storing all values
• discretization of s with BEM (Ass)

3

Problem

Global linear system coupling [13, 14] the FEM and the BEM unknowns:

Avv AT
sv

Asv Ass

 ×
xv
xs

[]
=

bv

bs

• finer model → larger system

• need for efficient solution methods
• iterative

• compute a sequence of terms based on
previous ones

• find a good solution approximation

• direct
• using Schur complement [22]

3

Direct solution

Schur complement

• reduce the problem on boundaries → simplify the system to solve

R1

R2

Avv AT
sv

Asv Ass

 ×
xv
xs

[]
=

bv

bs

Computation steps

1. eliminate xv from the second equation → Schur complement SR1 Avv AT
sv

R2←R2−AsvA
−1
vv ×R1 0 Ass − AsvA

−1
vv AT

sv︸ ︷︷ ︸
S

× [
xv
xs

]
=

[
bv

bs − AsvA
−1
vv bv

]

2. solve the reduced Schur complement system
Sxs = bs − AsvA

−1
vv bv

3. determine xv using xs
xv = A−1

vv (bv − AT
svxs)

4

Numerical computation

Properties of the input linear system

• Avv and Ass are symmetric
• storing only half of the coefficients

• Avv and Asv are sparse
• storing only non-zero values

Initial state of A

Ideal computation of S = Ass − AsvA
−1
vv Avs

• factorization of Avv into LvvL
T
vv → fill-in

S = Ass − Asv (LvvL
T
vv)
−1AT

sv

• computation of the Schur complement

S = Ass − (Asv (L
T
vv)
−1)︸ ︷︷ ︸

triangular solve

(Asv (L
T
vv)
−1)T︸ ︷︷ ︸

implicitly known

A after computing S

5

Two-stage implementations

Implementation

• coupling of a sparse direct and a dense direct solver
• fully-featured community solvers with appealing functionalities

• low-rank compression
• out-of-core computation
• distributed memory parallelism

• two different schemes depending on the way of using the building
blocks of the sparse solver

• baseline coupling
• advanced coupling

6

Vanilla solver couplings

baseline coupling

• separate Avv , Asv and Ass

• sparse facto., sparse solve

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

• AT
sv explicitly stored, dense

advanced coupling

• A as a whole

• sparse facto.+Schur

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

7

Vanilla solver couplings

baseline coupling

• separate Avv , Asv and Ass

• sparse facto., sparse solve

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

• AT
sv explicitly stored, dense

advanced coupling

• A as a whole

• sparse facto.+Schur

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

7

Vanilla solver couplings

baseline coupling

• separate Avv , Asv and Ass

• sparse facto., sparse solve

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

• AT
sv explicitly stored, dense

advanced coupling

• A as a whole

• sparse facto.+Schur

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

7

Vanilla solver couplings

baseline coupling

• separate Avv , Asv and Ass

• sparse facto., sparse solve

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

• AT
sv explicitly stored, dense

advanced coupling

• A as a whole

• sparse facto.+Schur

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

7

Vanilla solver couplings

baseline coupling

• separate Avv , Asv and Ass

• sparse facto., sparse solve

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

• AT
sv explicitly stored, dense

advanced coupling

• A as a whole

• sparse facto.+Schur

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

7

Vanilla solver couplings

baseline coupling

• separate Avv , Asv and Ass

• sparse facto., sparse solve

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

• AT
sv explicitly stored, dense

advanced coupling

• A as a whole

• sparse facto.+Schur

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

7

Vanilla solver couplings

baseline coupling

• separate Avv , Asv and Ass

• sparse facto., sparse solve

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

• AT
sv explicitly stored, dense

advanced coupling

• A as a whole

• sparse facto.+Schur

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

7

Vanilla solver couplings

baseline coupling

• separate Avv , Asv and Ass

• sparse facto., sparse solve

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

• AT
sv explicitly stored, dense

advanced coupling

• A as a whole

• sparse facto.+Schur

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

7

Vanilla solver couplings

baseline coupling

• separate Avv , Asv and Ass

• sparse facto., sparse solve

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

• AT
sv explicitly stored, dense

advanced coupling

• A as a whole

• sparse facto.+Schur

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

7

Vanilla solver couplings

baseline coupling

• separate Avv , Asv and Ass

• sparse facto., sparse solve

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

• AT
sv explicitly stored, dense

advanced coupling

• A as a whole

• sparse facto.+Schur

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

7

Vanilla solver couplings

baseline coupling

• separate Avv , Asv and Ass

• sparse facto., sparse solve

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

• AT
sv explicitly stored, dense

advanced coupling

• A as a whole

• sparse facto.+Schur

• dense facto., dense solve

• S non-compressed, dense,
entirely stored in RAM

7

Coping with limitations

• keep using fully-featured well optimized community solvers despite
limitations in their API

• two new algorithms for block-wise computation of S
→ allow for low-rank compression and out-of-core
1. multi-solve based on the baseline coupling
2. multi-factorization based on the advanced coupling

8

Proposed algorithms

Multi-solve

Si = Ass i − Asv

solve → Yi︷ ︸︸ ︷
(LvvL

T
vv)
−1AT

sv i

• 1 sparse facto. of the green matrix (symmetric)

• plenty of sparse solve involving the orange blocks (result is dense)

WITHOUT compression

WITH compression

9

Proposed algorithms

Multi-solve

Si = Ass i − Asv

solve → Yi︷ ︸︸ ︷
(LvvL

T
vv)
−1AT

sv i

• 1 sparse facto. of the green matrix (symmetric)

• plenty of sparse solve involving the orange blocks (result is dense)

WITHOUT compression
WITH compression

9

Proposed algorithms

Multi-factorization

Sij = Ass ij −

used with Schur API︷ ︸︸ ︷
Asv i (LvvUvv)

−1AT
sv j

• multiple sparse facto.+Schur of the violet matrix (non-symmetric)

• computation of the Schur complement blocks via API

WITHOUT compression

WITH compression

10

Proposed algorithms

Multi-factorization

Sij = Ass ij −

used with Schur API︷ ︸︸ ︷
Asv i (LvvUvv)

−1AT
sv j

• multiple sparse facto.+Schur of the violet matrix (non-symmetric)

• computation of the Schur complement blocks via API

WITHOUT compression WITH compression

10

Experimental evaluation

Academic test case [5]

• linear systems close enough to real-life

• arbitrary large FEM/BEM systems

Industrial test case

• 2,259,468 unknowns (larger s part)

Solvers

• sparse: MUMPS (compressed) [10]

• dense: SPIDO (non-compressed),
HMAT (compressed) [17]

Computation platform

• PlaFRIM [3]

Academic pipe mesh with v and s parts
(length: 2 m; radius: 4 m; 20,000 unknowns)

Real-life industrial FEM/BEM mesh

11

Preliminary comparative study [7]

• single node multi-core benchmarks without out-of-core
• study the solvers separately on sparse FEM and dense BEM systems

• evaluate the impact of compression
• identify the best performing parallel configurations

• better understand the behavior on coupled FEM/BEM systems

12

Focus on multi-solve and multi-factorization [8, 9]

• single node multi-core benchmarks without out-of-core

• push the algorithms to their limits (RAM)

• evaluate the impact of compressing the Schur complement S

• study the performance-memory tradeoff for varying block sizes

• validate the algorithms on a real-life industrial case

13

Focus on multi-solve and multi-factorization [8, 9]

multi-solve

multi-factorization

Industrial case

• cannot be processed without our algorithms

• compression of S helps
• multi-solve: 1.6× faster, 6.4× less RAM
• multi-factorization: 9.4× faster, 2.0× less RAM

14

Going further

Energetic profile [6]

• with H. Mathieu (SED), A. Guermouche and B. Tagliaro (STORM)
• energy_scope [18]

• visualize the energy consumption of a complex HPC application

• compare different indicators at once (energy, RAM, flops)

• clues on how to improve the implementation

Out-of-core and distributed memory parallelism (ongoing work)

• extends the previous studies of multi-solve and multi-factorization
1. low-rank compression of S
2. out-of-core computation of S
3. scale to multiple computation nodes with MPI

15

Summary

• two algorithms allowing us to:
• benefit from the most advanced functionalities of fully-featured

solvers
• process larger systems compared to vanilla couplings

• 9M (multi-solve) and 2.5M (multi-factorization) vs. 1.3M on a single
24-core, 128 GiB RAM workstation

• confirm the advantage of compressing the Schur complement

• validate the algorithms on a real-life industrial case

16

Single-stage implementations

Towards ideal implementation

multi-solve

multi-factorization

Limitations

• multi-solve: explicit storage of orange blocks in a
non-compressed dense matrix

• multi-factorization: superfluous re-factorizations
of the sparse submatrix Avv

• two separate stages
1. Schur complement S assembly
2. factorization of S and solution of xs and xv

17

Single-stage schemes

Sparse-oblivious Partially sparse-aware Sparse-aware

18

Sparse-aware single-stage implementation

• with A. Buttari and A. Jego
• IRIT/ENSEEIHT, Toulouse

• coupling of task based direct solvers
• sparse: qr_mumps [4]

• no compression, no distributed memory
parallelism (ongoing Ph.D.)

• dense: HMAT
• relying on the StarPU runtime [11]

• built-in out-of-core capability

• S is never assembled entirely in memory

• dense solver can start working without waiting
for S to be fully assembled

19

Sparse-aware single-stage implementation

• with A. Buttari and A. Jego
• IRIT/ENSEEIHT, Toulouse

• coupling of task based direct solvers
• sparse: qr_mumps [4]

• no compression, no distributed memory
parallelism (ongoing Ph.D.)

• dense: HMAT
• relying on the StarPU runtime [11]

• built-in out-of-core capability

• S is never assembled entirely in memory

• dense solver can start working without waiting
for S to be fully assembled

19

Sparse-aware single-stage implementation

• with A. Buttari and A. Jego
• IRIT/ENSEEIHT, Toulouse

• coupling of task based direct solvers
• sparse: qr_mumps [4]

• no compression, no distributed memory
parallelism (ongoing Ph.D.)

• dense: HMAT
• relying on the StarPU runtime [11]

• built-in out-of-core capability

• S is never assembled entirely in memory

• dense solver can start working without waiting
for S to be fully assembled

19

Current status

Done

1. integrate qr_mumps into the Airbus solver stack

2. implement multi-solve using qr_mumps as sparse solver for matrices
with real coefficients

3. implement LLT factorization for complex symmetric matrices in
qr_mumps (mission in Toulouse)

Ongoing

4. add a Schur complement API to qr_mumps

5. implement multi-factorization using qr_mumps as sparse solver

Pending

6. single-stage implementation

20

Summary

• two-stage multi-solve and multi-factorization allowing us to:
• benefit from the most advanced functionalities of fully-featured

solvers
• process larger systems compared to vanilla couplings
• not ideal

• single-stage scheme
• towards a proof of concept with some sacrifices

21

Conclusion

Final words

Thank you for attending!

22

References i

[1] GNU Guix software distribution and transactional package manager.
https://guix.gnu.org.

[2] Org mode for Emacs.
https://orgmode.org/.

[3] PlaFRIM: Plateforme fédérative pour la recherche en informatique et
mathématiques.
https://plafrim.fr/.

[4] qr_mumps, a software package for the solution of sparse, linear
systems on multicore computers.
http://buttari.perso.enseeiht.fr/qr_mumps/.

[5] test_FEMBEM, a simple application for testing dense and sparse
solvers with pseudo-FEM or pseudo-BEM matrices.
https://gitlab.inria.fr/solverstack/test_fembem.

23

https://guix.gnu.org
https://orgmode.org/
https://plafrim.fr/
http://buttari.perso.enseeiht.fr/qr_mumps/
https://gitlab.inria.fr/solverstack/test_fembem

References ii

[6] E. Agullo, M. Felšöci, A. Guermouche, H. Mathieu, G. Sylvand, and
B. Tagliaro, Study of the processor and memory power consumption
of coupled sparse/dense solvers, Research Report 9463, Inria
Bordeaux Sud-Ouest, Feb. 2022.

[7] E. Agullo, M. Felšöci, and G. Sylvand, A comparison of selected
solvers for coupled FEM/BEM linear systems arising from
discretization of aeroacoustic problems, Research Report RR-9412,
Inria Bordeaux Sud-Ouest, June 2021.

[8] , Comparison of coupled solvers for FEM/BEM linear systems
arising from discretization of aeroacoustic problems, in COMPAS
2021 - Conférence francophone d’informatique en Parallélisme,
Architecture et Système, Lyon / Virtuel, France, July 2021.

24

References iii

[9] , Direct solution of larger coupled sparse/dense linear systems
using low-rank compression on single-node multi-core machines in
an industrial context, Research Report 9453 (accepted at IPDPS
2022), Inria Bordeaux Sud-Ouest, Feb. 2022.

[10] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent, MUMPS
multifrontal massively parallel solver version 2.0, (1998).

[11] C. Augonnet, S. Thibault, and R. Namyst, StarPU: a Runtime
System for Scheduling Tasks over Accelerator-Based Multicore
Machines, Rapport de recherche RR-7240, INRIA, Mar. 2010.

[12] P. K. Banerjee and R. Butterfield, Boundary element methods in
engineering science, vol. 17, McGraw-Hill London, 1981.

25

References iv

[13] F. Casenave, Méthodes de réduction de modèles appliquées à des
problèmes d’aéroacoustique résolus par équations intégrales, PhD
thesis, Université Paris-Est, 2013.

[14] F. Casenave, A. Ern, and G. Sylvand, Coupled BEM–FEM for the
convected Helmholtz equation with non-uniform flow in a bounded
domain, Journal of Computational Physics, 257 (2014),
pp. 627–644.

[15] C. Dominik, The Org Mode 9.1 Reference Manual, 12th Media
Services, 2018.

[16] A. Ern and J.-L. Guermond, Theory and practice of finite elements,
vol. 159, Springer Science & Business Media, 2013.

26

References v

[17] B. Lizé, Résolution Directe Rapide pour les Éléments Finis de
Frontière en Électromagnétisme et Acoustique : H-Matrices.
Parallélisme et Applications Industrielles., PhD thesis, Université
Paris 13, 2014.

[18] H. Mathieu, Energy Scope: a tool for measuring the energy profile
of HPC and AI applications.
https://jcad2021.sciencesconf.org/data/Herve_Mathieu_
energy_scope.pdf, 2021.

[19] P. Raviart and J. Thomas, A mixed finite element method for 2-nd
order elliptic problems, in Mathematical Aspects of Finite Element
Methods, I. Galligani and E. Magenes, eds., vol. 606 of Lecture
Notes in Mathematics, Springer Berlin Heidelberg, 1977,
pp. 292–315.

27

https://jcad2021.sciencesconf.org/data/Herve_Mathieu_energy_scope.pdf
https://jcad2021.sciencesconf.org/data/Herve_Mathieu_energy_scope.pdf

References vi

[20] Sebaso, Jet engine airflow during take-off.
https://commons.wikimedia.org/wiki/File:
20140308-Jet_engine_airflow_during_take-off.jpg.

[21] A. Wang, N. Vlahopoulos, and K. Wu, Development of an energy
boundary element formulation for computing high-frequency sound
radiation from incoherent intensity boundary conditions, Journal of
Sound and Vibration, 278 (2004), pp. 413–436.

[22] F. Zhang, The Schur complement and its applications, vol. 4,
Springer Science & Business Media, 2006.

28

https://commons.wikimedia.org/wiki/File:20140308-Jet_engine_airflow_during_take-off.jpg
https://commons.wikimedia.org/wiki/File:20140308-Jet_engine_airflow_during_take-off.jpg

Appendix

Reproducible software envionments with Guix [1]

• transactional package manager able to co-exist with the primary
package manager

• self-contained, executable descriptions of entire software
environments

• reproducible accross multiple different machines
• natively or through container solutions

29

Reproducible studies with Org mode for Emacs [2, 15]

• literate programming paradigm
• combining formatted text with source code

• exhaustive documentation allowing others to reproduce a study
• question of proprietary source code, e.g. Airbus

30

Going further

How to build a reproducible study from scratch with Guix and Org

• tuto-techno-guix-hpc.gitlabpages.inria.fr/guidelines/

31

https://tuto-techno-guix-hpc.gitlabpages.inria.fr/guidelines/

	Introduction
	Two-stage implementations
	Single-stage implementations
	Conclusion
	Appendix

