

Solution of larger coupled sparse/dense linear systems in an industrial aeroacoustic context

Emmanuel Agullo, Marek Felšöci, Guillaume Sylvand June 15, 2022

Inria Bordeaux Sud-Ouest, France
Team-project HiePACS

Introduction

Industrial context

AIRBUS

- study the propagation of sound waves emitted by an aircraft
- acoustic pollution reduction, prototype certification
- discrete model for numerical simulations
- volume domain V (jet flow)
- Finite Elements Method (FEM) [19, 16]
- surface domain 5 (surface of the aircraft and the volume domain)
- Boundary Elements Method (BEM) [12, 21]

An acoustic wave (blue arrow) emitted by the aircraft's engine, reflected on the wing and crossing the jet flow.
Real-life case [20] (left) and a numerical model example (right).

Problem

Global linear system coupling $[13,14]$ the FEM and the BEM unknowns:

$$
\left[\begin{array}{ll}
A_{v v} & A_{s v}^{T} \\
A_{s v} & A_{s s}
\end{array}\right] \times\left[\begin{array}{l}
x_{v} \\
x_{s}
\end{array}\right]=\left[\begin{array}{l}
b_{v} \\
b_{s}
\end{array}\right]
$$

Problem

Global linear system coupling $[13,14]$ the FEM and the BEM unknowns:

- symmetric coefficient matrices:
- sparse parts
- lot of zeros \rightarrow storing only non-zero values
- discretization of v with FEM $\left(A_{v v}\right)$, s//v interaction $\left(A_{s v}\right)$
- a dense part
- a few or no zeros \rightarrow storing all values
- discretization of s with BEM $\left(A_{s s}\right)$

Problem

Global linear system coupling $[13,14]$ the FEM and the BEM unknowns:

$$
\left[\begin{array}{ll}
A_{v v} & A_{s v}^{T} \\
A_{s v} & A_{s s}
\end{array}\right] \times\left[\begin{array}{l}
x_{v} \\
x_{s}
\end{array}\right]=\left[\begin{array}{l}
b_{v} \\
b_{s}
\end{array}\right]
$$

- finer model \rightarrow larger system
- need for efficient solution methods
- iterative
- compute a sequence of terms based on previous ones
- find a good solution approximation
- direct
- using Schur complement [22]

Direct solution

Schur complement

- reduce the problem on boundaries \rightarrow simplify the system to solve

$$
\left.\begin{array}{ll}
R_{\mathbf{1}} \\
R_{\mathbf{2}} & \left.\llbracket\left[\begin{array}{ll}
A_{v v} & A_{s v}^{T} \\
A_{s v} & A_{s s}
\end{array}\right] \times\left[\begin{array}{l}
x_{v} \\
x_{s}
\end{array}\right]=\left[\begin{array}{l}
b_{v} \\
b_{s}
\end{array}\right], ~\right]
\end{array}\right]
$$

Computation steps

1. eliminate x_{v} from the second equation \rightarrow Schur complement S

$$
R_{2} R_{1} \leftarrow R_{2}-A_{s v} A_{v v}^{-1} \times R_{1}\left[\begin{array}{cc}
A_{v v} & A_{s v}^{T} \\
0 \underbrace{A_{s s}-A_{s v} A_{v v}^{-1} A_{s v}^{T}}_{S}
\end{array}\right] \times\left[\begin{array}{l}
x_{v} \\
x_{s}
\end{array}\right]=\left[\begin{array}{c}
b_{v} \\
b_{s}-A_{s v} A_{v v}^{-1} b_{v}
\end{array}\right]
$$

2. solve the reduced Schur complement system

$$
S x_{s}=b_{s}-A_{s v} A_{v v}^{-1} b_{v}
$$

3. determine x_{v} using x_{s}

$$
x_{v}=A_{v v}^{-1}\left(b_{v}-A_{s v}^{T} x_{s}\right)
$$

Numerical computation

Properties of the input linear system

- $A_{v v}$ and $A_{s s}$ are symmetric
- storing only half of the coefficients
- $A_{v v}$ and $A_{s v}$ are sparse
- storing only non-zero values

Initial state of A

Ideal computation of $S=A_{s s}-A_{s v} A_{v v}^{-1} A_{v s}$

- factorization of $A_{v v}$ into $L_{v v} L_{v v}^{T} \rightarrow \underline{\text { fill-in }}$

$$
S=A_{s s}-A_{s v}\left(L_{v v} L_{v v}^{T}\right)^{-1} A_{s v}^{T}
$$

- computation of the Schur complement

$$
S=A_{s s}-\underbrace{\left(A_{s v}\left(L_{v v}^{T}\right)^{-1}\right)}_{\text {triangular solve }} \underbrace{\left(A_{s v}\left(L_{v v}^{T}\right)^{-1}\right)^{T}}_{\text {implicitly known }}
$$

A after computing S

Two-stage implementations

Implementation

- coupling of a sparse direct and a dense direct solver
- fully-featured community solvers with appealing functionalities
- low-rank compression
- out-of-core computation
- distributed memory parallelism
- two different schemes depending on the way of using the building blocks of the sparse solver
- baseline coupling
- advanced coupling

Vanilla solver couplings

baseline coupling

- separate $A_{v v}, A_{s v}$ and $A_{s s}$
- sparse facto., sparse solve
- dense facto., dense solve

Vanilla solver couplings

baseline coupling

- separate $A_{v v}, A_{s v}$ and $A_{s s}$
- sparse facto., sparse solve
- dense facto., dense solve

Vanilla solver couplings

baseline coupling

- separate $A_{v v}, A_{s v}$ and $A_{s s}$
- sparse facto., sparse solve
- dense facto., dense solve

Vanilla solver couplings

baseline coupling

- separate $A_{v v}, A_{s v}$ and $A_{s s}$
- sparse facto., sparse solve
- dense facto., dense solve

Vanilla solver couplings

baseline coupling

- separate $A_{v v}, A_{s v}$ and $A_{s s}$
- sparse facto., sparse solve
- dense facto., dense solve

Vanilla solver couplings

baseline coupling

- separate $A_{v v}, A_{s v}$ and $A_{s s}$
- sparse facto., sparse solve
- dense facto., dense solve

advanced coupling

- A as a whole
- sparse facto.+Schur
- dense facto., dense solve

Vanilla solver couplings

baseline coupling

- separate $A_{v v}, A_{s v}$ and $A_{s s}$
- sparse facto., sparse solve
- dense facto., dense solve

advanced coupling

- A as a whole
- sparse facto.+Schur
- dense facto., dense solve

Vanilla solver couplings

baseline coupling

- separate $A_{v v}, A_{s v}$ and $A_{s s}$
- sparse facto., sparse solve
- dense facto., dense solve

advanced coupling

- A as a whole
- sparse facto.+Schur
- dense facto., dense solve

Vanilla solver couplings

baseline coupling

- separate $A_{v v}, A_{s v}$ and $A_{s s}$
- sparse facto., sparse solve
- dense facto., dense solve

advanced coupling

- A as a whole
- sparse facto.+Schur
- dense facto., dense solve

Vanilla solver couplings

baseline coupling

- separate $A_{v v}, A_{s v}$ and $A_{s s}$
- sparse facto., sparse solve
- dense facto., dense solve

- S non-compressed, dense, entirely stored in RAM
- $A_{s v}^{T}$ explicitly stored, dense

advanced coupling

- A as a whole
- sparse facto.+Schur
- dense facto., dense solve

Vanilla solver couplings

baseline coupling

- separate $A_{v v}, A_{s v}$ and $A_{s s}$
- sparse facto., sparse solve
- dense facto., dense solve

- S non-compressed, dense, entirely stored in RAM
- $A_{s v}^{T}$ explicitly stored, dense

advanced coupling

- A as a whole
- sparse facto.+Schur
- dense facto., dense solve

- S non-compressed, dense, entirely stored in RAM

Coping with limitations

- keep using fully-featured well optimized community solvers despite limitations in their API
- two new algorithms for block-wise computation of S
\rightarrow allow for low-rank compression and out-of-core

1. multi-solve based on the baseline coupling
2. multi-factorization based on the advanced coupling

Proposed algorithms

Multi-solve

$$
S_{i}=A_{s s_{i}}-A_{s v} \overbrace{\left(L_{v v} L_{v v}^{T}\right)^{-1} A_{s v_{i}}^{T}}^{\text {solve } \rightarrow Y_{i}}
$$

- 1 sparse facto. of the green matrix (symmetric)
- plenty of sparse solve involving the orange blocks (result is dense)

WITHOUT compression

Proposed algorithms

Multi-solve

$$
S_{i}=A_{s s_{i}}-A_{s v} \overbrace{\left(L_{v v} L_{v v}^{T}\right)^{-1} A_{s v_{i}}^{T}}^{\text {solve } \rightarrow Y_{i}}
$$

- 1 sparse facto. of the green matrix (symmetric)
- plenty of sparse solve involving the orange blocks (result is dense)

WITHOUT compression

WITH compression

Proposed algorithms

Multi-factorization

$$
S_{i j}=A_{s s_{j}}-\overbrace{A_{s v_{i}}\left(L_{v v} U_{v v}\right)^{-1} A_{s v_{j}}^{T}}^{\text {Used with Schur API }}
$$

- multiple sparse facto. + Schur of the violet matrix (non-symmetric)
- computation of the Schur complement blocks via API

WITHOUT compression

Proposed algorithms

Multi-factorization

$$
S_{i j}=A_{s s_{j}}-\overbrace{A_{s v_{i}}\left(L_{w v} U_{v v}\right)^{-1} A_{s v_{j}}^{T}}^{\text {Used with Schur API }}
$$

- multiple sparse facto. + Schur of the violet matrix (non-symmetric)
- computation of the Schur complement blocks via API

WITHOUT compression

WITH compression

Experimental evaluation

Academic test case [5]

- linear systems close enough to real-life
- arbitrary large FEM/BEM systems

Industrial test case

- 2,259,468 unknowns (larger part)

Solvers

- sparse: MUMPS (compressed) [10]
- dense: SPIDO (non-compressed), HMAT (compressed) [17]

Computation platform

Academic pipe mesh with v and s parts (length: $\mathbf{2 ~ m}$; radius: $\mathbf{4 ~ m}$; 20,000 unknowns)

Real-life industrial FEM/BEM mesh

- PlaFRIM [3]

Preliminary comparative study [7]

- single node multi-core benchmarks without out-of-core
- study the solvers separately on sparse FEM and dense BEM systems
- evaluate the impact of compression
- identify the best performing parallel configurations
- better understand the behavior on coupled FEM/BEM systems

Focus on multi-solve and multi-factorization [8, 9]

- single node multi-core benchmarks without out-of-core
- push the algorithms to their limits (RAM)
- evaluate the impact of compressing the Schur complement S
- study the performance-memory tradeoff for varying block sizes
- validate the algorithms on a real-life industrial case

Focus on multi-solve and multi-factorization $[8,9]$

multi-factorization

Industrial case

- cannot be processed without our algorithms
- compression of S helps
- multi-solve: $1.6 \times$ faster, $6.4 \times$ less RAM
- multi-factorization: $9.4 \times$ faster, $2.0 \times$ less RAM

Going further

Energetic profile [6]

- with H. Mathieu (SED), A. Guermouche and B. Tagliaro (STORM)
- energy_scope [18]
- visualize the energy consumption of a complex HPC application
- compare different indicators at once (energy, RAM, flops)
- clues on how to improve the implementation

Out-of-core and distributed memory parallelism (ongoing work)

- extends the previous studies of multi-solve and multi-factorization

1. low-rank compression of S
2. out-of-core computation of S
3. scale to multiple computation nodes with MPI

Summary

- two algorithms allowing us to:
- benefit from the most advanced functionalities of fully-featured solvers
- process larger systems compared to vanilla couplings
- 9 M (multi-solve) and 2.5 M (multi-factorization) vs. 1.3 M on a single 24-core, 128 GiB RAM workstation
- confirm the advantage of compressing the Schur complement
- validate the algorithms on a real-life industrial case

Single-stage implementations

Towards ideal implementation

multi-solve

multi-factorization

Limitations

- multi-solve: explicit storage of orange blocks in a non-compressed dense matrix
- multi-factorization: superfluous re-factorizations of the sparse submatrix $A_{v v}$
- two separate stages

1. Schur complement S assembly
2. factorization of S and solution of x_{s} and x_{v}

Single-stage schemes

Sparse-oblivious

Partially sparse-aware

Sparse-aware

Sparse-aware single-stage implementation

- with A. Buttari and A. Jego
- IRIT/ENSEEIHT, Toulouse
- coupling of task based direct solvers
- sparse: qr_mumps [4]
- no compression, no distributed memory parallelism (ongoing Ph.D.)
- dense: HMAT
- relying on the StarPU runtime [11]
- built-in out-of-core capability
- S is never assembled entirely in memory
- dense solver can start working without waiting for S to be fully assembled

Sparse-aware single-stage implementation

- with A. Buttari and A. Jego
- IRIT/ENSEEIHT, Toulouse
- coupling of task based direct solvers
- sparse: qr_mumps [4]
- no compression, no distributed memory parallelism (ongoing Ph.D.)
- dense: HMAT
- relying on the StarPU runtime [11]
- built-in out-of-core capability
- S is never assembled entirely in memory
- dense solver can start working without waiting for S to be fully assembled

Sparse-aware single-stage implementation

- with A. Buttari and A. Jego
- IRIT/ENSEEIHT, Toulouse
- coupling of task based direct solvers
- sparse: qr_mumps [4]
- no compression, no distributed memory parallelism (ongoing Ph.D.)
- dense: HMAT
- relying on the StarPU runtime [11]
- built-in out-of-core capability
- S is never assembled entirely in memory
- dense solver can start working without waiting for S to be fully assembled

Current status

Done

1. integrate qr_mumps into the Airbus solver stack
2. implement multi-solve using qr_mumps as sparse solver for matrices with real coefficients
3. implement $L L^{T}$ factorization for complex symmetric matrices in qr_mumps (mission in Toulouse)

Ongoing

4. add a Schur complement API to qr_mumps
5. implement multi-factorization using qr_mumps as sparse solver

Pending

6. single-stage implementation

Summary

- two-stage multi-solve and multi-factorization allowing us to:
- benefit from the most advanced functionalities of fully-featured solvers
- process larger systems compared to vanilla couplings
- not ideal
- single-stage scheme
- towards a proof of concept with some sacrifices

Conclusion

Final words

Thank you for attending!

References i

[1] GNU Guix software distribution and transactional package manager. https://guix.gnu.org.
[2] Org mode for Emacs. https://orgmode.org/.
[3] PlaFRIM: Plateforme fédérative pour la recherche en informatique et mathématiques.
https://plafrim.fr/.
[4] qr_mumps, a software package for the solution of sparse, linear systems on multicore computers.
http://buttari.perso.enseeiht.fr/qr_mumps/.
[5] test_FEMBEM, a simple application for testing dense and sparse solvers with pseudo-FEM or pseudo-BEM matrices. https://gitlab.inria.fr/solverstack/test_fembem.

References ii

[6] E. Agullo, M. Felšöci, A. Guermouche, H. Mathieu, G. Sylvand, and B. Tagliaro, Study of the processor and memory power consumption of coupled sparse/dense solvers, Research Report 9463, Inria Bordeaux Sud-Ouest, Feb. 2022.
[7] E. Agullo, M. Felšöci, and G. Sylvand, A comparison of selected solvers for coupled FEM/BEM linear systems arising from discretization of aeroacoustic problems, Research Report RR-9412, Inria Bordeaux Sud-Ouest, June 2021.
[8] _-, Comparison of coupled solvers for FEM/BEM linear systems arising from discretization of aeroacoustic problems, in COMPAS 2021 - Conférence francophone d'informatique en Parallélisme, Architecture et Système, Lyon / Virtuel, France, July 2021.

References iif

[9] —_, Direct solution of larger coupled sparse/dense linear systems using low-rank compression on single-node multi-core machines in an industrial context, Research Report 9453 (accepted at IPDPS 2022), Inria Bordeaux Sud-Ouest, Feb. 2022.
[10] P. R. Amestoy, I. S. Duff, and J.-Y. L'Excellent, MUMPS multifrontal massively parallel solver version 2.0, (1998).
[11] C. Augonnet, S. Thibault, and R. Namyst, StarPU: a Runtime System for Scheduling Tasks over Accelerator-Based Multicore Machines, Rapport de recherche RR-7240, INRIA, Mar. 2010.
[12] P. K. Banerjee and R. Butterfield, Boundary element methods in engineering science, vol. 17, McGraw-Hill London, 1981.

References iv

[13] F. Casenave, Méthodes de réduction de modèles appliquées à des problèmes d'aéroacoustique résolus par équations intégrales, PhD thesis, Université Paris-Est, 2013.
[14] F. Casenave, A. Ern, and G. Sylvand, Coupled BEM-FEM for the convected Helmholtz equation with non-uniform flow in a bounded domain, Journal of Computational Physics, 257 (2014), pp. 627-644.
[15] C. Dominik, The Org Mode 9.1 Reference Manual, 12th Media Services, 2018.
[16] A. Ern and J.-L. Guermond, Theory and practice of finite elements, vol. 159, Springer Science \& Business Media, 2013.

References

[17] B. Lizé, Résolution Directe Rapide pour les Éléments Finis de Frontière en Électromagnétisme et Acoustique : \mathcal{H}-Matrices. Parallélisme et Applications Industrielles., PhD thesis, Université Paris 13, 2014.
[18] H. Mathieu, Energy Scope: a tool for measuring the energy profile of HPC and AI applications.
https://jcad2021.sciencesconf.org/data/Herve_Mathieu_ energy_scope.pdf, 2021.
[19] P. Raviart and J. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Mathematical Aspects of Finite Element Methods, I. Galligani and E. Magenes, eds., vol. 606 of Lecture Notes in Mathematics, Springer Berlin Heidelberg, 1977, pp. 292-315.

References vi

[20] Sebaso, Jet engine airflow during take-off.
https://commons.wikimedia.org/wiki/File:
20140308-Jet_engine_airflow_during_take-off.jpg.
[21] A. Wang, N. Vlahopoulos, and K. Wu, Development of an energy boundary element formulation for computing high-frequency sound radiation from incoherent intensity boundary conditions, Journal of Sound and Vibration, 278 (2004), pp. 413-436.
[22] F. Zhang, The Schur complement and its applications, vol. 4, Springer Science \& Business Media, 2006.

Appendix

Reproducible software envionments with Guix [1]

Guix

- transactional package manager able to co-exist with the primary package manager
- self-contained, executable descriptions of entire software environments
- reproducible accross multiple different machines
- natively or through container solutions

Reproducible studies with Org mode for Emacs $[2,15]$

Firstly, we want to benchmark the SPIDO solver on dense BEM systems for various unknown counts. Under template instantiation there are two array-like constructs later expanded by GCVB to generate multiple variants of the SPIDO benchmark, e. 8 , for various problem sizes. slum holds the common job name prefix and the scheduling information used for the generation of the associated sbatch header file, here based on the template defined in Listing 1. The nbpts array defines the problem sizes to generate benchmarks for. Note that, \{slurn\{prefix]\} , \{alumiplatfore]\}, =\{ntpts\} and so on are the placeholders for the values defined in tenplate_ instantiation

Given the current template_instantiatice configuration, we generate $1 \times 3=3$ variants of the SPIDO benchrmark grouped into a single job script with a time limit of 2 hours

```
id: 'spida-{ntpts}'
tenplate files: "noncbatci)
template instantiation:
    - {prefix: "sploco", platfara: "plarim", node: miriel", count: 1.
    tasks: 24, tine. '9.02:88:068*
```

Follows the task corresponding to this benchmark. The launch command is read from the list of default values defined at the beginning of the file. We only overide here the nthroads key to set the count of OpenMP and MKL threads to use for the computation. The values are propagated to the launch command through the (ejob creationloptionsl) placeholder.

Tasks:
nthreads: "OHP MOM THREG5-24 WIL WM THREOSS-24"
options: - - ben -withopt -nbpts (nepts)*
For the corresponding validation phase we need to specify an identifier as well as a launch command composed of the validation executable obtained bere through the tajob crestico[va executable!) placeholder, and some options specific to this benchmark such as the information on the solver used, the target platform as well as the variation of benchmark to make a difference between regular benchmarks based on parameter variation and scalability benchmarks and the target platform.

volidations:

1d; "vallication-spido-\{ntpts\} ${ }^{\text {- }}$

* variation-peraneters, platform-fsturatplationemi]
- literate programming paradigm
- combining formatted text with source code
- exhaustive documentation allowing others to reproduce a study
- question of proprietary source code, e.g. Airbus

Going further

How to build a reproducible study from scratch with Guix and Org

- tuto-techno-guix-hpc.gitlabpages.inria.fr/guidelines/

